Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Toxicon ; 237: 107528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013057

RESUMO

Viperids of the genus Lachesis, also known as bushmasters, are capable of injecting great amounts of venom that cause severe envenomation incidents. Since phospholipases type A2 are mainly involved in edema and myonecrosis within the snakebite sites, in this work, the isolation, amino acid sequence and biochemical characterization of the first phospholipase type A2 from the venom of Lachesis acrochorda, named Lacro_PLA2, is described. Lacro_PLA2 is an acidic aspartic 49 calcium-dependent phospholipase A2 with 93% similarity to the L. stenophrys phospholipase. Lacro_PLA2 has a molecular mass of 13,969.7 Da and an experimental isoelectric point around 5.3. A combination of N-terminal Edman degradation and MS/MS spectrometry analyses revealed that Lacro_PLA2 contains 122 residues including 14 cysteines that form 7 disulfide bridges. A predicted 3D model shows a high resemblance to other viperid phospholipases. Nevertheless, immunochemical and phospholipase neutralization tests revealed a notorious level of immunorecognition of the isolated protein by two polyclonal antibodies from viperids from different genus, which suggest that Lacro_PLA2 resembles more to bothropic phospholipases. Lacro_PLA2 also showed significantly high edema activity when was injected into mice; so, it could be an alternative antigen in the development of antibodies against toxins of this group of viperids, seeking to improve commercial polyclonal antivenoms.


Assuntos
Crotalinae , Viperidae , Animais , Camundongos , Viperidae/metabolismo , Espectrometria de Massas em Tandem , Fosfolipases A2/química , Venenos de Víboras/toxicidade , Edema/induzido quimicamente
2.
Toxicon ; 238: 107568, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38110040

RESUMO

Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1ß, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and ß-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.


Assuntos
Animais Peçonhentos , Venenos de Artrópodes , Artrópodes , Artropatias , Venenos de Escorpião , Escorpiões , Viperidae , Animais , Humanos , Interleucina-10 , Interleucina-6 , Interleucina-8 , Venenos de Serpentes/química , Citocinas , Fator de Necrose Tumoral alfa , Anti-Inflamatórios
3.
Toxicon ; 235: 107328, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884129

RESUMO

Viperidae snake species is widely abundant and responsible for most envenomation cases in Turkey. The structural and compositional profiles of snake venom have been investigated to study the venom component variation across different species and to profile the venom biological activity variation against prey. In this context, we used proteomics, glycoproteomics and glycomics strategies to characterize the protein, glycoproteins and glycan structural and compositional profiles of various snake venoms in the Viperidae family. Moreover, we compared these profiles using the downstream bioinformatics and machine learning classification modules. The overall mass spectrometry profiles identified 144 different proteins, 36 glycoproteins and 78 distinct N-glycan structures varying in composition across the five venoms. A high amount of the characterized proteins belongs to the glycosylated protein family Trypsin-like serine protease (Tryp_SPc), Disintegrin (DISIN), and ADAM Cysteine-Rich (ACR). Most identified N-glycans have a complex chain carrying galactosylated N-glycans abundantly. The glycan composition data obtained from glycoproteomics aligns consistently with the findings from glycomics. The clustering and principal component analyses (PCA) illustrated the composition-based similarities and differences between each snake venom species' proteome, glycoproteome and glycan profiles. Specifically, the N-glycan profiles of M. xanthina (Mx) and V. a. ammodytes (Vaa) venoms were identical and difficult to differentiate; in contrast, their proteome profiles were distinct. Interestingly, the variety of the proteins across the species highlighted the impact of glycosylation on the diversity of the glycosylated protein families. This proposed high throughput approach provides accurate and comprehensive profiles of the composition and function of various Viperidae snake venoms.


Assuntos
Venenos de Víboras , Viperidae , Animais , Venenos de Víboras/química , Viperidae/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Glicômica , Venenos de Serpentes/química , Glicoproteínas/metabolismo , Polissacarídeos
4.
Molecules ; 28(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764293

RESUMO

Secreted phospholipases A2 are snake-venom proteins with many biological activities, notably anti-tumor activity. Phospholipases from the same snake type but different geographical locations have shown similar biochemical and biological activities with minor differences in protein sequences. Thus, the discovery of a new phospholipase A2 with unique characteristics identified in a previously studied venom could suggest the origins of these differences. Here, a new Group II secreted phospholipase A2 (Cc-PLA2-II) from the snake venom of Saudi Cerastes cerastes gasperetti was isolated and characterized. The purified enzyme had a molecular weight of 13.945 kDa and showed high specific activity on emulsified phosphatidylcholine of 1560 U/mg at pH 9.5 and 50 °C with strict calcium dependence. Interestingly, stability in extreme pH and high temperatures was observed after enzyme incubation at several pH levels and temperatures. Moreover, a significant dose-dependent cytotoxic anti-tumor effect against six human cancer cell lines was observed with concentrations of Cc-PLA2 ranging from 2.5 to 8 µM. No cytotoxic effect on normal human umbilical-vein endothelial cells was noted. These results suggest that Cc-PLA2-II potentially has angiogenic activity of besides cytotoxicity as part of its anti-tumor mechanism. This study justifies the inclusion of this enzyme in many applications for anticancer drug development.


Assuntos
Antineoplásicos , Viperidae , Animais , Humanos , Fosfolipases A2 do Grupo II , Arábia Saudita , Fosfolipases A2/farmacologia , Fosfolipases A2/química , Fosfolipases , Venenos de Víboras/farmacologia , Venenos de Víboras/química , Antineoplásicos/farmacologia
5.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569801

RESUMO

Inflammation is associated with many pathology disorders and the malignant progression of most cancers. Therefore, targeting inflammatory pathways could provide a promising strategy for disease prevention and treatment. In this study, we experimentally investigated the anti-inflammatory effect of CC5 and CC8, two disintegrin isoforms isolated from Cerastes cerastes snake venom, on LPS-stimulated macrophages, both on human THP-1 and mouse RAW264.7 cell adherence and their underlying mechanisms by measuring cytokine release levels and Western blot assay. Equally, both molecules were evaluated on a carrageenan-induced edema rat model. Our findings suggest that CC5 and CC8 were able to reduce adhesion of LPS-stimulated macrophages both on human THP-1 and mouse RAW264.7 cells to fibrinogen and vitronectin through the interaction with the αvß3 integrin receptor. Moreover, CC5 and CC8 reduced the levels of reactive oxygen species (ROS) mediated by the NF-κB, MAPK and AKT signaling pathways that lead to decreased production of the pro-inflammatory cytokines TNF-α, IL-6 and IL-8 and increased secretion of IL-10 in LPS-stimulated THP-1 and RAW264.7 cells. Interestingly, both molecules potently exhibited an anti-inflammatory effect in vivo by reducing paw swelling in rats. In light of these results, we can propose the CC5 and CC8 disintegrins as interesting tools to design potential candidates against inflammatory-related diseases.


Assuntos
Desintegrinas , Viperidae , Ratos , Camundongos , Humanos , Animais , Desintegrinas/farmacologia , Lipopolissacarídeos/toxicidade , Viperidae/metabolismo , Venenos de Serpentes/farmacologia , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Isoformas de Proteínas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células RAW 264.7
6.
Toxins (Basel) ; 15(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37368658

RESUMO

To improve the characterization of snake venom protein profiles, we report the application of a new generation of proteomic methodology to deeply characterize complex protein mixtures. The new approach, combining a synergic multi-enzymatic and a time-limited digestion (MELD), is a versatile and straightforward protocol previously developed by our group. The higher number of overlapping peptides generated during MELD increases the quality of downstream peptide sequencing and of protein identification. In this context, this work aims at applying the MELD strategy to a venomics purpose for the first time, and especially for the characterization of snake venoms. We used four venoms as the test models for this proof of concept: two Elapidae (Dendroaspis polylepis and Naja naja) and two Viperidae (Bitis arietans and Echis ocellatus). Each venom was reduced and alkylated before being submitted to two different protocols: the classical bottom-up proteomics strategy including a digestion step with trypsin only, or MELD, which combines the activities of trypsin, Glu-C and chymotrypsin with a limited digestion approach. The resulting samples were then injected on an M-Class chromatographic system, and hyphenated to a Q-Exactive Mass Spectrometer. Toxins and protein identification were performed by Peaks Studio X+. The results show that MELD considerably improves the number of sequenced (de novo) peptides and identified peptides from protein databases, leading to the unambiguous identification of a greater number of toxins and proteins. For each venom, MELD was successful, not only in terms of the identification of the major toxins (increasing of sequence coverage), but also concerning the less abundant cellular components (identification of new groups of proteins). In light of these results, MELD represents a credible methodology to be applied as the next generation of proteomics approaches dedicated to venomic analysis. It may open new perspectives for the sequencing and inventorying of the venom arsenal and should expand global knowledge about venom composition.


Assuntos
Proteômica , Viperidae , Animais , Proteômica/métodos , Tripsina/metabolismo , Venenos de Serpentes/química , Elapidae/metabolismo , Proteínas/metabolismo , Viperidae/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Digestão , Venenos Elapídicos/química , Proteoma/análise
7.
Toxicon ; 229: 107138, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37127124

RESUMO

African trypanosomiasis is an infectious disease caused by hemoparasites of the genus Trypanosoma and remains a major health problem in Africa - killing around 4000 people and animals worth an estimated $5 billion, annually. The absence of a vaccine and satisfactory drug against African trypanosomiasis (AT) necessitates the continued search for new chemotherapy options. Owing to the rich biochemical diversity in snake venom, it has recently become a source of therapeutic peptides that are being explored for the development of novel drug candidates for diverse ailments such as cancers and infectious diseases. To explore this, Echis ocellatus venom (EOV) was investigated for the presence of an anti-Trypanosoma factor, with the subsequent aim to isolate and identify it. Crude EOV was collected and tested in vitro on the bloodstream form (BSF) i.e. long and slender morphological form of Trypanosoma brucei and T. congolense. This initial testing was followed by a sequential anti-trypanosomal assay guided purification of EOV using ethanol precipitation, distillation, and ion exchange (IEX) chromatography to obtain the active trypanocidal component. The purified anti-Trypanosoma factor, estimated to be a 52-kDa protein on SDS-PAGE, was subjected to in-gel trypsin digestion and 2D RP HPLC-MS/MS to identify the protein. The anti-Trypanosoma factor was revealed to be a zinc-dependent metalloproteinase that contains the HEXXHXXGXXH adamalysin motif. This protein may provide a conceptual framework for the possible design of a safe and effective anti-trypanosomal peptide for the treatment of AT.


Assuntos
Trypanosoma , Tripanossomíase Africana , Viperidae , Animais , Venenos de Víboras/química , Tripanossomíase Africana/tratamento farmacológico , Espectrometria de Massas em Tandem , Viperidae/metabolismo , Metaloproteases/metabolismo
8.
J Ethnopharmacol ; 314: 116577, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37178980

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cerastes is a snake found mainly in the Egyptian desert. Many studies were performed to explain the possible snake venom's pharmacological therapeutic effect in different autoimmune diseases. One of the most common auto-immune diseases is rheumatoid arthritis. Rheumatoid arthritis is characterized by a high release of pro-inflammatory and immune-modulatory cytokines. The reduction of these markers can indicate how effective is the administered drug. AIM OF THE STUDY: This study aims to explore the potential pharmacological effects of cerastes venom in experimentally-induced RA in rats using Complete Freund's adjuvant - via different mechanisms - by assessing various tissue and serum parameters. MATERIALS AND METHODS: The rats were assigned to negative control group, cerastes control group, positive control group, dexamethasone-treated group, infliximab-treated group, and cerastes-treated group. The study ended on the 20th day when serum and tissue samples were prepared for further evaluation of reduced glutathione, malondialdehyde, rheumatoid factor, tumor necrosis factor-α, interleukin-6, and nuclear factor kappa-light-chain-enhancer of activated B cells as well as relative expression of phosphorylated Janus-kinase, phosphorylated signal transducers and activators of transcription, nuclear factor erythroid 2-related factor 2, and receptor activator of nuclear factor Kappa-B ligand. In addition, a histopathological examination of different groups' knees joints, and spleen was done. RESULTS: The results showed a significant improvement of arthritis induced in the cerastes-treated group in contrast to the positive control group in all assessed parameters. In addition, significant improvement of arthritis was observed in the histopathological examination of different groups' knees joints, and spleen. CONCLUSION: These results revealed that cerastes snake venom has potent anti-inflammatory and immunomodulatory effects and can be used in the management of arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Viperidae , Ratos , Animais , Adjuvante de Freund , Janus Quinases/metabolismo , Venenos de Víboras , Viperidae/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico
9.
Neurotox Res ; 40(6): 1793-1801, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36194379

RESUMO

The targeting of specific prey by snake venom toxins is a fascinating aspect of molecular and ecological evolution. Neurotoxic targeting by elapid snakes dominates the literature in this regard; however, recent studies have revealed viper toxins also induce neurotoxic effect. While this effect is thought to primarily be driven by prey selectivity, no study has quantified the taxonomically specific neurotoxicity of the viper clade consisting of Daboia, Macrovipera, Montivipera, and Vipera genera. Here, we tested venom toxin binding from 28 species of vipers from the four genera on the alpha 1 neuronal nicotinic acetylcholine receptors (nAChRs) orthosteric sites of amphibian, avian, lizard, rodent, and human mimotopes (synthetic peptides) using the Octet HTX biolayer interferometry platform. Daboia siamensis and D. russelii had broad binding affinity towards all mimotopes, while D. palestinae had selectivity toward lizard. Macrovipera species, on the other hand, were observed to have a higher affinity for amphibian mimotopes except for M. schweizeri, which inclined more toward lizard mimotopes. All Montivipera and most Vipera species also had higher affinity toward lizard mimotopes. Vipera a. montandoni, V. latastei, V. nikolski, and V. transcaucasina had the least binding to any of the mimotopes of the study. While a wide range of affinity binding towards various mimotopes were observed within the clade, the lowest affinity occurred towards the human target. Daboia siamensis and Macrovipera lebetina exhibited the greatest affinity toward the human mimotope, albeit still the least targeted of the mimotopes within those species. Overlaying this toxin-targeting trait over phylogeny of this clade revealed multiple cases of amplification of this trait and several cases of secondary loss. Overall, our results reveal dynamic variation, amplification, and some secondary loss of the prey targeting trait by alpha-neurotoxins within the venoms of this clade, indicating evolutionary selection pressure shaping the basic biochemistry of these venoms. Our work illustrates the successful use of this biophysical assay to further research snake venom neurotoxins and emphasizes the risk of generalizing venom effects observed on laboratory animals to have similar effects on humans.


Assuntos
Síndromes Neurotóxicas , Viperidae , Animais , Humanos , Venenos de Víboras/toxicidade , Venenos de Víboras/química , Neurotoxinas/toxicidade , Peptídeos/química
10.
Toxins (Basel) ; 14(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36287984

RESUMO

Envenoming by Macrovipera lebetina subspecies causes severe life-threatening difficulties for people living in North Africa and the Middle East. To better understand the pathophysiology of envenoming and improve patient management, knowledge about the venom components of the subspecies is essential. Here, the venom proteomes of Macrovipera lebetina lebetina from Cyprus and Macrovipera lebetina cernovi from Iran were characterized using RP-HPLC separation of the crude venom proteins, SDS-PAGE of fractionated proteins, and LC-MS/MS of peptides obtained from in-gel tryptic digestion of protein bands. Moreover, we also used high-resolution shot-gun proteomics to gain more reliable identification, where the whole venom proteomes were subjected directly to in-solution digestion before LC-HR-MS/MS. The data revealed that both venoms consisted of at least 18 protein families, of which snake venom Zn2+-dependent metalloprotease (SVMP), serine protease, disintegrin, phospholipase A2, C-type lectin-like, and L-amino acid oxidase, together accounted for more than 80% of the venoms' protein contents. Although the two viper venoms shared mostly similar protein classes, the relative occurrences of these toxins were different in each snake subspecies. For instance, P-I class of SVMP toxins were found to be more abundant than P-III class in the venoms of M. l. cernovi compared to M. l. lebetina, which gives hints at a more potent myonecrotic effect and minor systemic hemorrhage following envenoming by M. l. cernovi than M. l. lebetina. Moreover, single-shot proteomics also revealed many proteins with low abundance (<1%) within the venoms, such as aminopeptidase, hyaluronidase, glutaminyl-peptide cyclotransferase, cystatin, phospholipase B, and vascular endothelial growth factor. Our study extends the in-depth understanding of the venom complexity of M. lebetina subspecies, particularly regarding toxin families associated with envenoming pathogenesis and those hard-detected protein classes expressed in trace amounts.


Assuntos
Proteômica , Viperidae , Animais , Humanos , Aminopeptidases/metabolismo , Cromatografia Líquida , Desintegrinas/metabolismo , Hialuronoglucosaminidase/metabolismo , Irã (Geográfico) , L-Aminoácido Oxidase/metabolismo , Lectinas Tipo C/metabolismo , Lisofosfolipase/metabolismo , Metaloproteases/metabolismo , Proteoma/metabolismo , Serina Proteases/metabolismo , Espectrometria de Massas em Tandem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Venenos de Víboras/química , Viperidae/metabolismo
11.
Toxins (Basel) ; 14(6)2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35737039

RESUMO

This study reported reproductive pathologies associated with Echis ocellatus venom in animal model. Twenty male Wistar rats with body weight between 180 and 220 g were selected randomly into two groups (n = 10). Rats in group 1 served as the control while rats in group 2 were envenomed with a single intraperitoneal injection of 0.055 mg/kg−1 (LD6.25) of E. ocellatus venom on the first day and a repeated dose on the twenty fifth day. Both control and envenomed rats were monitored for fifty consecutive days. The venom caused a significant (p < 0.05) reduction in sperm motility, count, and volume, with increased sperm anomalies in envenomed rats compared to the control. Likewise, serum concentrations of male reproductive hormones were significantly (p < 0.05) higher in envenomed rats. Increased levels of malondialdehyde were accompanied by a significant (p < 0.05) decrease in reduced glutathione and catalase activity in the epididymis and testis tissues of envenomed rats. The venom enhanced the release of epididymal and testicular tumor necrosis factor-alpha and interleukin1-beta compared to the control. Furthermore, severe pathological defects were noticed in tissues of the testis and epididymis of envenomed rats. This study demonstrated that E. ocellatus venom toxins can induce reproductive dysfunction in male victims of snake envenoming.


Assuntos
Mordeduras de Serpentes , Viperidae , Animais , Antivenenos , Citocinas , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Sêmen , Mordeduras de Serpentes/patologia , Venenos de Serpentes , Motilidade dos Espermatozoides , Espermatozoides/patologia , Testículo/patologia
12.
Toxins (Basel) ; 14(4)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448845

RESUMO

Bitiscetin-1 (aka bitiscetin) and bitiscetin-2 are C-type lectin-like proteins purified from the venom of Bitis arietans (puff adder). They bind to von Willebrand factor (VWF) and-at least bitiscetin-1-induce platelet agglutination via enhancement of VWF binding to platelet glycoprotein Ib (GPIb). Bitiscetin-1 and -2 bind the VWF A1 and A3 domains, respectively. The A3 domain includes the major site of VWF for binding collagen, explaining why bitiscetin-2 blocks VWF-to-collagen binding. In the present study, sequences for a novel bitiscetin protein-bitiscetin-3-were identified in cDNA constructed from the B. arietans venom gland. The deduced amino acid sequences of bitiscetin-3 subunits α and ß share 79 and 80% identity with those of bitiscetin-1, respectively. Expression vectors for bitiscetin-3α and -3ß were co-transfected to 293T cells, producing the heterodimer protein recombinant bitiscetin-3 (rBit-3). Functionally, purified rBit-3 (1) induced platelet agglutination involving VWF and GPIb, (2) did not compete with bitiscetin-1 for binding to VWF, (3) blocked VWF-to-collagen binding, and (4) lost its platelet agglutination inducing ability in the presence of an anti-VWF monoclonal antibody that blocked VWF-to-collagen binding. These combined results suggest that bitiscetin-3 binds to the A3 domain, as does bitiscetin-2. Except for a small N-terminal fragment of a single subunit-which differs from that of both bitiscetin-3 subunits-the sequences of bitiscetin-2 have never been determined. Therefore, by identifying and analyzing bitiscetin-3, the present study is the first to present the full-length α- and ß-subunit sequences and recombinant expression of a bitiscetin-family toxin that blocks the binding of VWF to collagen.


Assuntos
Viperidae , Fator de von Willebrand , Aglutinação , Animais , Sítios de Ligação , Plaquetas/metabolismo , Colágeno/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Peptídeos/farmacologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Venenos de Serpentes , Viperidae/metabolismo , Fator de von Willebrand/metabolismo
13.
Int J Biol Macromol ; 206: 990-1002, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321814

RESUMO

Bothorps atrox is responsible for most of the ophidism cases in Perú. As part of the envenoming, myotoxicity is one of the most recurrent and destructive effects. In this study, a myotoxin, named BaMtx, was purified from B. atrox venom to elucidate its biological, immunological, and molecular characteristics. BaMtx was purified using CM-Sephadex-C-25 ion-exchange resin and SDS-PAGE analysis showed a unique protein band of 13 kDa or 24 kDa under reducing or non-reducing conditions, respectively. cDNA sequence codified a 122-aa mature protein with high homology with other Lys49-PLA2s; modeled structure showed a N-terminal helix, a ß-wing region, and a C-terminal random coil. This protein has a poor phospholipase A2 enzymatic activity. BaMtx has myotoxic (DMM = 12.30 ± 0.95 µg) and edema-forming (DEM = 26.00 ± 1.15 µg) activities. Rabbit immunization with purified enzyme produced anti-BaMtx antibodies that reduced 50.28 ± 10.15% of myotoxic activity and showed significant cross-reactivity against B. brazili and B pictus venoms. On the other hand, BaMtx exhibits mild anti-proliferative and anti-migratory effects on breast cancer cells, affecting the ROS and NADH levels, which may reduce mitochondrial respiration. These results contribute to the understanding of B. atrox Lys49-PLA2 effects and establish the anticancer potential de BaMtx.


Assuntos
Bothrops , Venenos de Crotalídeos , Viperidae , Sequência de Aminoácidos , Animais , Bothrops/metabolismo , Miotoxicidade , Peru , Fosfolipases A2/química , Coelhos , Viperidae/metabolismo
14.
Inflammation ; 45(4): 1700-1719, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35249189

RESUMO

Envenomation by Cerastes cerastes often results in local dermonecrotic lesions. While immunotherapy is effective in reversing systemic symptoms, this strategy remains deficient in counteracting the extended dermonecrosis induced from the bite site. In this study, the therapeutic effect of pharmacological drugs on the dermonecrotic activity of the venom was investigated. Venom administration caused a marked dermonecrotic lesion with increased levels of oxidative stress biomarkers (MPO, EPO, NO, H2O2, MDA, protein carbonyl, and thiol levels). Antioxidant capacity was decreased, as evidenced by reduced catalase, glutathione, and selenium levels. Histopathological analysis of skin biopsies revealed necrotic lesions accompanied by hemorrhage and epidermis thickening. The efficiency of cyproheptadine (C), dexamethasone (D), and tetracycline (T), as a monotherapy or in association, were evaluated on the dermonecrotic activity of the venom. Most of the treatments (CD, CT, DT, and CDT) largely reduced tissue necrosis to, respectively, 84.29, 87.83, 83.77, and 82.71% and significantly decreased MPO and EPO activities and NO, H2O2, MDA, and protein carbonyl levels in skin tissue homogenates. CT and CDT associations significantly increased the antioxidant status as indicated by enhanced catalase, glutathione, and selenium levels. The second challenge of the pharmacological associations was more effective in improving the oxidative/antioxidative balance. Skin tissue sections from treated animals with CT or CDT revealed tissue structure close to that observed in control animals. Therefore, the synergistic action of all tested drugs on the major pathways of inflammation (phospholipases A2, metalloproteinases, and histamine) seems to be efficient to neutralize the necrotic activity of the venom.


Assuntos
Selênio , Viperidae , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catalase , Glutationa , Peróxido de Hidrogênio , Necrose , Selênio/farmacologia , Selênio/uso terapêutico , Resultado do Tratamento , Venenos de Víboras/química
15.
Curr Drug Targets ; 23(2): 126-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139779

RESUMO

The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent two important challenges in modern medicine. Biological compounds have been explored with a particular focus on venoms. Although they can be lethal or cause considerable damage to humans, venom is also a source rich in components with high therapeutic potential. Viperidae family is one of the most emblematic venomous snake families and several studies highlighted the antibacterial and antitumor potential of viper toxins. According to the literature, these activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria, as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide an overview of the venom toxins produced by species belonging to the Viperidae family, exploring their roles during the envenoming and their pharmacological properties, in order to demonstrate its antibacterial and antitumor potential.


Assuntos
Toxinas Biológicas , Viperidae , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Desintegrinas , Humanos , Venenos de Víboras/farmacologia
16.
Toxins (Basel) ; 14(2)2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35202182

RESUMO

The venomous species Deinagkistrodon acutus has been used as anti-inflammatory medicine in China for a long time. It has been proven to have anti-inflammatory activity, but its specific anti-inflammatory components have not yet been fully elucidated. Tumor necrosis factor receptor-1 (TNFR1), which participates in important intracellular signaling pathways, mediates apoptosis, and functions as a regulator of inflammation, is often used as the target to develop anti-inflammatory drugs. The small peptides of snake venom have the advantages of weak immunogenicity and strong activity. To obtain the specific TNFR1 binding peptides, we constructed a T7 phage library of D. acutus venom glands, and then performed biopanning against TNFR1 on the constructed library. After biopanning three times, several sequences with potential binding capacity were obtained and one 41-amino acid peptide was selected through a series of biological analyses including sequence length, solubility, and simulated affinity, named DAvp-1. After synthesis, the binding capacity of DAvp-1 and TNFR1 was verified using surface plasmon resonance technology (SPR). Conclusively, by applying phage display technology, this work depicts the successful screening of a promising peptide DAvp-1 from D. acutus venom that binds to TNFR1. Additionally, our study emphasizes the usefulness of phage display technology for studies on screening natural product components.


Assuntos
Anti-Inflamatórios/análise , Técnicas de Visualização da Superfície Celular/métodos , Biblioteca de Peptídeos , Receptores Tipo I de Fatores de Necrose Tumoral/análise , Proteínas Recombinantes de Fusão/análise , Venenos de Serpentes/química , Viperidae , Animais , China
17.
Proteins ; 90(3): 802-809, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34739152

RESUMO

Ecarin is one of the most widely used drug compounds in blood clotting experiments and is used to monitor and treat many diseases such as cancer, liver, lupus, and cardiovascular disease. The metalloproteinase domain is known as the active site of ecarin. In this study, an ecarin metalloproteinase cassette was designed and synthesized in the pUC57 vector. The gene fragment was released and cloned into the pET-28a vector and expressed in Escherichia coli. The recombinant protein was confirmed by western blotting. Enzyme activity was estimated by a laboratory coagulation test, and prothrombin time and tertiary structure were determined by using the Iterative Threading ASSEmbly Refinement (I-TASSER) server. Data from blood clotting tests for the produced ecarin activity were analyzed using an independent t test. As per I-TASSER server prediction, model 1 with the highest confidence score 0.95, template modeling score (0.84 ± 0.08), and root mean square deviation (3.5 ± 2.4 Å) was considered as the best model, and the 2e3xA enzyme was more similar to the target protein. The predictive results helped to better understand the relationship between the structure and function of the ecarin metalloproteinase domain. Also, the production of this active site in the prokaryotic expression system, which is simpler and more cost-effective than the production of the eukaryotic system, showed that this recombinant ecarin could be used as a substitute for the raw snake venom of Echis carinatus because it converts prothrombin into thrombin, and its activity, as estimated using the prothrombin time test, was found to be faster than normal ecarin.


Assuntos
Endopeptidases/química , Metaloproteases/química , Proteínas Recombinantes/química , Animais , Endopeptidases/farmacologia , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trombina/química , Trombose/tratamento farmacológico , Viperidae
18.
Top Companion Anim Med ; 46: 100586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34583053

RESUMO

Dogs are commonly bitten by the European adder (Vipera berus) but studies investigating the effects of envenomation are limited. Snakebite-related kidney injury is reported in dogs but diagnosis of acute kidney injury (AKI) might be limited by the insensitivity of routinely used renal function biomarkers. The aim of this study was to evaluate novel biomarkers of renal injury (urinary cystatin B and urinary clusterin) and biomarkers of renal function (serum creatinine and serum symmetric dimethylarginine), and urine protein to creatinine ratio in dogs envenomated by V. berus. Biomarkers were measured at presentation (T1), 12 hours (T2), 24 hours (T3), 36 hours (T4), and 14 days (T5) after snakebite and compared to a group of healthy control dogs. A secondary aim was to investigate the association between biomarker concentrations and severity of clinical signs of envenomation using a snakebite severity score (SSS). Urinary cystatin B concentrations were significantly higher at all timepoints in envenomated dogs compared to controls (P < .010), except for T5 (P = .222). Absolute urinary clusterin concentrations were not significantly different to controls at any timepoint. Compared to controls, serum creatinine and serum symmetric dimethylarginine concentrations were significantly lower in envenomated dogs at T1-T4 (P < .036) and T2-T4 (P < .036), respectively. Urine protein to creatinine ratio was higher in envenomated dogs compared to controls at T2 and T3. Urinary cystatin B concentrations at T1 were correlated with SSS (Spearman's ρ = 0.690, P < .001). The increased urinary cystatin B concentrations observed in dogs envenomated by V. berus in comparison to controls may indicate renal tubular injury in these patients.


Assuntos
Doenças do Cão , Viperidae , Animais , Biomarcadores , Clusterina , Cistatina B , Doenças do Cão/diagnóstico , Cães , Rim/fisiologia
19.
Int. j. morphol ; 40(2): 304-313, 2022. ilus
Artigo em Inglês | LILACS | ID: biblio-1385602

RESUMO

SUMMARY: Myodural bridges (MDB) are anatomical connections between the suboccipital muscles and the cervical dura mater which pass through both the atlanto-occipital and the atlanto-axial interspaces in mammals. In our previous studies, we found that the MDB exists in seven terrestrial mammal species, two marine mammal species, two reptilian species, and one bird species. A recent study suggested that given the "ubiquity" of myodural bridges in terrestrial vertebrates, the MDB may also exist in snakes. Specifically, we focused on the Gloydius shedaoensis, a species of Agkistrodon (pit viper snake) that is only found on Shedao Island, which is in the southeastern sea of Dalian City in China. Six head and neck cadaveric specimens of Gloydius shedaoensis were examined. Three specimens were used for anatomical dissection and the remaining three cadaveric specimens were utilized for histological analysis. The present study confirmed the existence of the MDB in the Gloydius shedaoensis. The snake's spinalis muscles originated from the posterior edge of the supraoccipital bones and the dorsal facet of the exocciput, and then extended on both sides of the spinous processes of the spine, merging with the semispinalis muscles. On the ventral aspect of this muscular complex, it gave off fibers of the MDB. These MDB fibers twisted around the posterior margin of the exocciput and then passed through the atlanto-occipital interspace, finally terminating on the dura mater. We observed that the MDB also existed in all of the snakes' intervertebral joints. These same histological findings were also observed in the Gloydius brevicaudus, which was used as a control specimen for the Gloydius shedaoensis. In snakes the spinal canal is longer than that observed in most other animals. Considering the unique locomotive style of snakes, our findings contribute to support the hypothesis that the MDB could modulate cerebrospinal fluid (CSF) pulsations.


RESUMEN: Los puentes miodurales (MDB) son conexiones anatómicas entre los músculos suboccipitales y la duramadre cervical que pasan a través de los espacios intermedios atlanto-occipital y atlanto-axial en los mamíferos. En nuestros estudios anteriores, encontramos que el MDB existe en siete especies de mamíferos terrestres, dos especies de mamíferos marinos, dos especies de reptiles y una especie de ave. Un estudio reciente sugirió que dada la "ubicuidad" de los puentes miodurales en los vertebrados terrestres, el MDB también puede existir en las serpientes. Específicamente, nos enfocamos en Gloydius shedaoensis, una especie de Agkistrodon (serpiente víbora) que solo se encuentra en la isla Shedao, en el mar sureste de la ciudad de Dalian en China. Se examinaron seis especímenes cadavéricos de cabeza y cuello de Gloydius shedaoensis. Se utilizaron tres especímenes para la disección anatómica y los tres especímenes cadavéricos restantes se utilizaron para el análisis histológico. El presente estudio confirmó la existencia del MDB en Gloydius shedaoensis. Los músculos espinosos de la serpiente se originaron en el margen posterior de los huesos supraoccipital y la cara dorsal del exoccipucio, y luego se extendieron a ambos lados de los procesos espinosas de la columna vertebral, fusionándose con los músculos semiespinosos. En la cara ventral de este complejo muscular se desprendían fibras del MDB. Estas fibras MDB se ubican alrededor del margen posterior del exoccipucio y luego atraviesan el interespacio atlanto-occipital, terminando finalmente en la duramadre. Observamos que el MDB también existía en todas las articulaciones intervertebrales de las serpientes. Estos mismos hallazgos histológicos también se observaron en Gloydius brevicaudus, que se utilizó como muestra de control para Gloydius shedaoensis. En las serpientes, el canal espinal es más largo que el observado en la mayoría de los otros animales. Teniendo en cuenta el estilo único locomotor de las serpientes, nuestros hallazgos contribuyen a respaldar la hipótesis de que el MDB podría modular las pulsaciones del líquido cerebroespinal.


Assuntos
Animais , Líquido Cefalorraquidiano/fisiologia , Viperidae/anatomia & histologia , Tecido Conjuntivo , Dura-Máter/anatomia & histologia , Crotalinae , Anatomia Comparada
20.
Toxins (Basel) ; 13(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34941741

RESUMO

Snake venom proteins, which are responsible for deadly snakebite envenomation, induce severe injuries including neurotoxicity, myotoxicity, cardiotoxicity, hemorrhage, and the disruption of blood homeostasis. Yet, many snake-venom proteins have been developed as potential drugs for treating human diseases due to their pharmacological effects. In this study, we evaluated the use of, an L-amino acid oxidase isolated from Cerastes cerastes snake venom CC-LAAO, as a potential anti-glioblastoma drug, by investigating its in vivo and in vitro pharmacological effects. Our results showed that acute exposure to CC-LAAO at 1 and 2.5 µg/mL does not induce significant toxicity on vital organs, as indicated by the murine blood parameters including aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) activities, and creatinine levels. The histopathological examination demonstrated that only at high concentrations did CC-LAAO induce inflammation and necrosis in several organs of the test subjects. Interestingly, when tested on human glioblastoma U87 cells, CC-LAAO induced a dose-dependent apoptotic effect through the H2O2 generated during the enzymatic reaction. Taken altogether, our data indicated that low concentration of CC-LAAO may be safe and may have potential in the development of anti-glioblastoma agents.


Assuntos
L-Aminoácido Oxidase/metabolismo , Venenos de Víboras/química , Viperidae/fisiologia , Alanina Transaminase/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Creatinina/metabolismo , Edema/induzido quimicamente , Edema/patologia , Hemorragia/induzido quimicamente , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA